Multivariable Identification of Continuous-time Fractional System
نویسندگان
چکیده
ABSTRACT This paper presents two subspace-based methods, from the MOESP (MIMO output-error state space) family, for state-space identification of continuous-time fractional commensurate models from sampled input-output data. The methodology used in this paper involves a continuous-time fractional operator allowing to reformulate the problem so that the state-space matrices can be estimated with conventional discrete-time subspace techniques based on QR and singular value decompositions. The first method is a deterministic one whereas the second approach takes place in a stochastic context. The performance of both methods is demonstrated using Monte Carlo simulations at various signalto-noise ratios. The deterministic method leads, as expected, to biased estimates. This bias is removed in the stochastic method by the use of an instrumental variable. As compared to rational systems, the commensurate differentiation order must be estimated besides the state-space matrices which is done using nonlinear programming. This is the first work developed for multiinput multi-output system identification using fractional models.
منابع مشابه
Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملAn optimal instrumental variable method for continuous-time fractional model identification
this paper deals with continuous-time system identification using fractional differentiation models in a noisy output context. The simplified refined instrumental variable for continuous-time systems (srivc) is extended to fractional models. Monte Carlo simulation analysis are used to demonstrate the performance of the proposed optimal instrumental variable scheme.
متن کاملChoice of transformation for modelling non-linear continuous biomarkers
Identification of prognostic and predictive biomarkers is important for targeting treatments to patients and for the design and analysis of randomised controlled trials. Cox proportional hazards modelling is a standard method for assessing prognostic value of clinical biomarkers where time to occurrence of an event is the primary outcome of interest. An important issue in the analysis of progno...
متن کاملSystem Identification Using Fractional Hammerstein Models
Abstract: Identification of continuous-time non-linear systems characterised by fractional order dynamics is studied. The Riemann-Liouville definition of fractional differentiation is used. A new identification method is proposed through the extension of Hammerstein-type models by allowing their linear part to belong to the class of fractional models. Fractional models are compact and so are us...
متن کاملIdentification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm
In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009